If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3u^2+5u+2=0
a = -3; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·(-3)·2
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*-3}=\frac{-12}{-6} =+2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*-3}=\frac{2}{-6} =-1/3 $
| -3u+5u+2=0 | | 1225x2=0 | | 1x-20=2x+17 | | 2.5x^2+20x-30=0 | | Y^2+7y+12.25=0 | | 0.98^x=0.1 | | 3r+1+2r=6 | | 4/13x+1/2=1/3-9/13x+1/3 | | 2t+4+2t-3t=3+5 | | F(x)=+19 | | 1/4z+9=-3/4z | | 3y-7=8y+8 | | 4/7+2/7-x=27 | | 7x²+13=580 | | 3y-7=8y | | 8-2b=-2(b=3;b=0;b=5 | | $11x+$247-$13x=$209 | | 09x+2.3=-6.4 | | 14x+8=5(x-3)+5= | | 4(21/10)/7=x | | x-3)4=12 | | 3(x+4)-4=2(x+4)+5 | | 12/x=48/36 | | x+5+1=4 | | 9x+6-4x^2=8 | | 3+1.5x+4=4x-1.5x | | 1/4t+2/3=1/2 | | 8y-4y=32 | | 1/3h-1/3h+11=8 | | 6n-3+2n=-11 | | 20x+15x+20(x−1)+15(x−1)=245 | | G(x)=3x^2-4x+3 |